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Abstract 18 

The Pan-African Damara Orogenic system records Gondwana amalgamation involving serial 19 
suturing of the Congo-São Francisco and Rio de la Plata cratons (North Gondwana) through 580-550 20 
Ma before amalgamation with the Kalahari-Antarctic cratons (South Gondwana) as part of the 530 21 
Ma Kuunga-Damara Orogeny. Closure of the Adamastor Ocean was diachronous from the Araçuaí 22 
through Ribeira and Dom Feliciano belts resulting in southwards extrusion of mid-crustal high-grade 23 
metamorphic rocks of arc-like affinity (Coastal Terrane) in the Kaoko Belt and the Florianopolis 24 
magmatic arc (Pedras Grandes granite of the “granite” belt) of the Dom Feliciano Belt.  Peak 25 
deformation in the Kaoko Belt was 580-550 Ma and 545-530 Ma in the Gariep Belt.  The Kaoko and 26 
Gariep Belts of the Damara Orogen both show sinistral transpressional deformation followed by final 27 
overthrusting of the Congo and Kalahari passive margins, and development of foreland-style basins 28 
at ~570-560 Ma (Nama siliciclastic sequences of the Gariep Belt/Kalahari craton). Peak 29 
deformation/metamorphism in the central Damara Belt was at 530-500 Ma, with thrusting onto the 30 
Kalahari craton from 495 Ma through 480 Ma. Coupling of the Congo craton with the Rio de la Plata 31 
craton occurred before final closure of the Mozambique and Khomas (Damara Belt) oceans with the 32 
requirement that the Kuunga suture extends into Africa as the Damara Belt, and the Lufialian Arc 33 
and Zambezi Belt of Zambia. Palaeomagnetic data indicate that the Gondwana cratonic components 34 
were in close proximity by ~550 Ma, so the last stages of the Damara-Kuunga Orogeny were 35 
intracratonic, and lead to eventual outstepping of deformation/metamorphism to the Ross-36 
Delamerian Orogen (~520-500 Ma) along the leading edge of the Gondwana supercontinental 37 
margin. 38 
 39 
Keywords: Gondwana, Pan-African orogeny, Adamastor Ocean, Mozambique Ocean, Kuunga 40 
Orogeny 41 
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 43 

Understanding supercontinent reconstruction requires detailed knowledge of the orogens 44 

that bind the former continental fragments together.  Apart from knowledge of palaeomagnetic 45 

poles for the constituent cratonic masses, this includes the component lithofacies, the gross 46 

crustal architecture, the geometry of the major fault and shear zones as well as the thermal and 47 

temporal aspects of deformation, metamorphism and magmatism.  For Western Gondwana 48 

supercontinent construction (Fig. 1) this requires understanding of Brasiliano/Pan-African 49 

orogenesis, as Western Gondwana is made of a mosaic of cratons linked by a complex set of 50 

Pan-African-Brasiliano fold belts (Fig. 2)  51 
The Pan-African Damara Orogen of Namibia (Fig. 3) reflects part of the West Gondwana 52 

suture. It provides connection between the Brasiliano Orogens of South America through the 53 

Ribeira and Dom Feliciano Belts of southern Brazil (Fig. 2) and is related to convergence 54 

between the Rio de la Plata and the Congo and Kalahari Cratons of South America and Southern 55 

Africa (e.g. Prave 1996). The Damara Orogen consists of three component arms that define a 56 

three-pronged orogenic system or collisional triple junction (Coward 1981,1983; Hoffman et al. 57 

1994). These component fold belts are the NNW-trending northern coastal arm or Kaoko Belt, 58 

the S-trending southern coastal arm or Gariep Belt and the ENE-trending Inland or Damara Belt 59 

(e.g. Kröner 1977; Martin & Porada 1977a, b; Miller 1983a). The Damara Belt extends under 60 

cover into Botswana and ultimately links with the Lufilian Arc and the Zambezi, Mozambique 61 

and Lurio Belts (see Goscombe et al. 2000; Hanson 2003).  62 

 Questions remain regarding the timing and circumstances of accretion of the cratonic 63 

continental fragments, the relative positions of the cratonic fragments over time, and the 64 

presence and widths of ocean basins between the fragments.  Tectonic scenarios range from 65 

ensimatic models with ocean basins that developed with oceanic lithosphere (e.g. Barnes & 66 

Sawyer 1980; Kasch 1983a; John et al. 2003) through to ensialic models of failed Cambrian 67 

intracratonic rifting (e.g. Martin & Porada 1977a, b; Trompette 1997). Despite similar questions 68 

and discussions in the detailed works on the Damara Orogen published in the early 1980’s (e.g. 69 

Martin & Eder 1980; Miller 1983b) the nature, size and substrate to the respective ocean basins, 70 

their tectonic settings of ocean closure, and the presence, or lack of subduction systems, as well 71 

as the directions of subduction are still uncertain. 72 

This paper revisits these issues in the light of the most recent geological, geochronological 73 

and thermochronological data for the Damara Orogen. As part of this analysis the paper 74 

investigates the geologic components of the Damara Orogen and summarises the most recent 75 
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data on 1) the structural style and crustal architecture 2) the metamorphism, 2) geochronologic 76 

and thermochronologic constraints and 4) deformation kinematics.  It is a review paper that 77 

attempts to link these data with the time-equivalent belts of South America. It also updates and 78 

revises the tectonic evolution of the various belts that make up the Damara Orogen, particularly 79 

in the context of Gondwana amalgamation. 80 

 81 

Background 82 

Connections between the orogenic components of Africa and South America were first 83 

recognised by Du Toit (1937), as part of his Samfrau Orogenic Zone of Permo-Triassic age. 84 

Porada (1979, 1989) investigated more fully the genetic links between the different parts of the 85 

Pan-African Damara Orogen and the Brasiliano Ribeira Orogen with a detailed review of 86 

Damara Orogen geologic relationships, including regional stratigraphy, structure and 87 

metamorphism.  88 

Porada (1989) argued that the Damara orogenic system originated as a three-pronged 89 

continental rift system at ~1000 Ma, where the Damara Belt (Inland Branch) was considered as a 90 

failed rift or aulocogen. This scenario includes two episodes; the Katangan at 900-750 Ma and 91 

the Damaran at 750-500 Ma. More recently, Trompette (1997) argued for West Gondwana 92 

supercontinent aggregation from 900-600 Ma, involving a two-stage evolution with intracratonic 93 

rifting (ensialic) at ~600 Ma followed by basin closure at 520Ma. 94 

The timing of ocean basin closure has been disputed.  Stannistreet et al. (1991) proposed 95 

that the Khomas Ocean (Damara Belt, Inland Branch) closed before the southern Adamastor 96 

Ocean (Gariep Belt), in contrast to Prave (1996) who used sedimentologic evidence to argue that 97 

the southern Adamastor Ocean closed before the Khomas Ocean. Ocean closure, particularly for 98 

the Adamastor Ocean is generally accepted as being diachronous, closing initially in the north 99 

(Kaoko Belt) and migrating southwards with a zippering action (e.g. Germs  & Gresse 1991; 100 

Gresse & Germs 1993; Stannistreet et al. 1991; Frimmel & Frank 1998; Maloof 2000). Most 101 

recent geochronology/thermochronology of the Damara Orogen (e.g. Goscombe et al. 2005b; 102 

Gray et al. 2006) linked with existing data [e.g. Frimmel & Frank (1998) for the Gariep; Kukla 103 

(1993) and Jung & Mezger (2003) for the Damara Belt] supports closure of the Adamastor 104 

Ocean resulting in the Kaoko Belt, then the southern Adamastor Ocean producing the Gariep 105 

Belt and finally the Khomas Ocean, suturing along the Damara Belt. 106 

Recent provenance studies utilising U-Pb analyses of detrital zircon populations have 107 

established linkages between the various lithostratigraphic units on both sides of the Atlantic 108 



 4 

Ocean and helped establish or confirm tectonic evolutionary scenarios. For example, Frimmel et 109 

al., (1996) argued for W-directed subduction beneath the Rio de la Plata craton, which has been 110 

supported by the provenance data of Basei et al. (2005). Similar detrital zircon populations in the 111 

Rocha (Dom Feliciano Belt), Oranjemund and Stinkfontein Groups (Gariep Belt) establish 112 

basin/sedimentation linkages that require subduction in the southern Adamastor Ocean beneath 113 

the Rio de La Plata Craton. 114 

Recent palaeomagnetic studies and/or reviews of Gondwana palaeomagnetism (Rapalini 115 

2006; Tohver 2006) suggest that West Gondwana was a coherent block by 550 Ma, as there is a 116 

single APWP for its components from this time onwards, requiring continent –continent 117 

collisions for the Damara and Gariep belts at this time. However, the detailed 118 

geochronology/thermochronology presented in Goscombe et al. (2005b) and Gray et al. (2006) 119 

reviewed in this paper greatly refines this and allows a new revised look at the tectonics of West 120 

Gondwana amalgamation. 121 

 122 

Damara Orogen Crustal Architecture— Overview 123 

Lithostratigraphy 124 

The major geologic components of the Damara Orogen (Fig. 3) are the Archean-125 

Proterozoic basement inliers, the Damara Sequence passive margin carbonates that rimmed the 126 

ocean basins between the cratons (Otavi facies), the deeper water turbidites within the ocean 127 

basins (Swakop facies) and the Mulden and upper Nama (Fish River Sub-Group) groups 128 

foreland basin deposits (molasse) of northern and southern Namibia, respectively. The basement 129 

is part of continental-scale ovoid cratonic nuclei, partly contained within Namibia (Fig. 3a) and 130 

now preserved either as large inliers, the Kunene and Kamanjab inliers of the Congo Craton in 131 

northern Namibia and basement of the Kalahari Craton in the Southern Margin Zone of the 132 

Damara Belt and bordering the eastern margin of the Gariep Belt in southern Namibia (Figs. 3 & 133 

4). Basement is also exposed in the cores of smaller, elongated domes within the Central Zone of 134 

the Damara Belt and in antiformal nappes and thrust slivers in the Kaoko Belt (Fig. 4c). 135 

Deposition of the Damara Sequence spanned the Neoproterozoic between at least 770 136 

and 600 Ma (Miller 1983a; Prave 1996; Hoffman et al. 1994).  The basal Damara Sequence is 137 

represented by rift-related siliciclastics of the Nosib Group, comprised of quartzites, 138 

conglomerates and arenites. Quartz-syenite, alkaline ignimbrite and alkali-rhyolite units in the 139 

upper Nosib Group have U-Pb and Pb-Pb zircon ages ranging 757±1 to 746±2 (Hoffmann et al. 140 

1994; Hoffman et al. 1998: de Kock et al. 2000), constraining the minimum age of the Nosib 141 
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Group to be approximately 750 Ma (Prave 1996; Hoffman et al. 1998). The overlying Otavi 142 

Group is dominated by turbiditic greywacke with pelitic schists and psammites and rare mafic 143 

schists. Within this succession are two turbiditic carbonate formations, parts of which are 144 

correlated with regional diamictite horizons that are elsewhere interpreted to be of 750-735 Ma 145 

and 700 Ma age (Hoffman et al. 1994; Frimmel 1995; Hoffman et al. 1998; Folling et al. 1998). 146 

The uppermost Otavi Group is the widespread Kuiseb Formation, which is comprised of 147 

turbiditic greywacke and pelite schists with thin calcsilicate bands (Fig. 3). 148 

 149 

Structure 150 

The belts that make up the Damara Orogen, or the arms of the collisional triple junction, 151 

have distinct structural trends and style (Figs. 4 & 5). Structural grain is NNW-trending in the 152 

Kaoko and Gariep Belts, but is ENE-trending in the Damara Belt (Fig. 5). Both coastal arms are 153 

sinistral transpressional belts (Kaoko Belt: Dürr & Dingeldey 1996; Maloof 2000; Passchier et 154 

al. 2002; Goscombe et al. 2003a, b; and Gariep belt: Davies & Coward 1982; Frimmel 1995; 155 

Hälbich & Alchin 1995), whereas the Damara Belt is a divergent orogen that formed during 156 

high-angle convergence between the Congo and Kalahari Cratons (Coward 1981; Miller 1983a; 157 

Porada et al. 1983). The junction between the southern Kaoko Belt and the Damara Belt is the 158 

distinctive Ugab Zone with complex fold interference (Coward 1983; Porada et al. 1983; Maloof 159 

2000; Passchier et al. 2002; Goscombe et al., 2004).  160 

The Kaoko Belt is dominated by two NNW-trending crustal-scale shear zones and inter-161 

linking shear zones that define orogen-scale shear lenses (Fig. 5). Similar trending arcuate shear 162 

zones define the major boundaries in the Gariep Belt (Fig. 5). The Damara Belt is made up of 163 

fault- and shear zone bounded zones of varying structural style, ranging from north to south as a 164 

fold-thrust belt displaying complex fold interference, a granite-dominated inner-zone with 165 

elongate, WNW-trending basement cored domes and Damara Sequence basins and in the south a 166 

transposed schist belt and another marginal fold-thrust zone with basement cored fold nappes 167 

(Fig. 5). 168 

Each belt of the Damara Orogen is dominated by craton-vergent, imbricate thrust-shear 169 

zone systems (Fig. 4). Both the Kaoko and Gariep Belts have crustal architectures with inferred 170 

W-dipping décollements (Fig. 4a, c). In the Kaoko Belt the steeply W-dipping mylonite zones 171 

and inclined, E-vergent basement-cored fold-nappes are considered to root into this décollement 172 

(Goscombe et al. 2005a).  The Gariep Belt geometry (Fig. 4c) has a composite, obducted 173 

ophiolite thrust-nappe, overlying imbricate faults in the passive margin sequence (Frimmel 174 

1995). In contrast, the Damara Belt is an asymmetric, doubly-vergent orogen (Fig. 4b). The 175 
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southern margin is defined by a wide zone of intense, N-dipping, shear-dominated transposed 176 

fabrics (Southern Zone) and basement-cored fold-nappes bordering the Kalahari craton 177 

(Southern Margin Zone). The Northern Zone is a craton-vergent, fold-thrust belt without a 178 

strongly sheared transposed zone. These Northern and Southern Margin Zones must have 179 

décollements dipping away from the respective cratons (Fig. 4b). 180 

 181 

Metamorphism 182 

The Damara Orogen shows contrasting styles of metamorphism. The Kaoko Belt consists 183 

of high-grade amphibolite to granulite facies metamorphics (Orogen Core of the Western Kaoko 184 

Zone) juxtaposed against intermediate-pressure amphibolite facies rocks (Escape Zone of the 185 

Central Kaoko Zone) in the footwall of the Purros Mylonite Zone (PMZ, Fig. 2), and low-grade 186 

greenschist facies rocks of the foreland or Eastern Kaoko Zone below the Sesfontein Thrust 187 

(Goscombe et al. 2003a, 2005a; Will et al. 2004). The belt shows marked thermal partitioning 188 

into a heterogeneous though largely high-grade and high average thermal gradient Orogen Core 189 

bounded by major shear zones, and an inverted Barrovian-series margin of intermediate pressure 190 

with basement-cored fold-nappes thrust onto the Congo Craton.  Peak metamorphic conditions 191 

for the high-grade parts of the Orogen Core were 800-840 °C and 6-8 kbar, between 500 and 192 

690°C and 8-9 kbar in the Escape Zone. The Coastal Terrane experienced two metamorphic 193 

events; an early high-grade migmatitic event of ~725°C and 7 kbar and during transpressional 194 

reworking conditions of 550ºC and 4.5 kbar (Goscombe et al. 2005a).  195 

The Gariep Belt is mostly of low metamorphic grade (Frimmel 2000), with greenschist-196 

to-transitional amphibolite facies conditions in the imbricated Port Nolloth Zone passive margin 197 

sequences (Fig. 4c).  Temperatures ranged from 400°C to 500°C and pressures from 2.5 to ~3 198 

kbar (Frimmel 2000).  The Chameis Complex mélange of the Marmora Terrane (Fig. 2) records 199 

sub-blueschist, subduction-related metamorphism and peak temperatures of 500°C to 550°C and 200 

pressures of ~6 kbar (Frimmel 2000). 201 

The Damara Belt consists of a central high-T/low-P, granite-dominated belt flanked by 202 

the Northern Zone and Southern and Southern Margin Zones that have intermediate-203 

T/intermediate-P metamorphism (Kasch 1983a). The granite-dominated Central Zone underwent 204 

peak temperatures of ~750°C and pressures of ~5.0-6.0 kbar (Kasch 1983a; Jung et al., 2000). 205 

Post-kinematic granites are largely confined to the Central and Northern Zones of the Damara 206 

Belt (Fig. 3). These granitoids are typically composite bodies, some concentrically zoned, with 207 

at least three intrusive phases ranging from syenite to biotite-granite and late-stage aplite dykes. 208 

The Southern Zone underwent peak temperatures of ~600°C and pressures of ~10 kbar (Kasch 209 
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1983a). The Northern Zone of the Damara Belt shows along strike variation in metamorphism 210 

during N-S convergence, with low-P contact metamorphism with anticlockwise P-T paths 211 

dominating in the west (Ugab Zone) and higher-P (Barrovian-series) metamorphism with 212 

clockwise P-T paths in the east (Goscombe et al., 2005a).  The eastern Northern Zone has peak 213 

metamorphic conditions of 635 ºC and 8.7 kbar and experienced deep burial, high-P/moderate-T 214 

Barrovian metamorphism (Goscombe et al. 2005a).  215 

 216 

Orogen Kinematics 217 

Structurally the Gariep Belt shows bulk SE-directed transport (Fig. 5) partitioned into 218 

strike-slip faulting (Davies & Coward 1982), and longitudinal or NW-SE stretching in the 219 

northern part and major shear zones of the Marmora sheet (Davies & Coward, 1982; Gresse 220 

1994), and very strong axial elongation or NE-SW stretching in the southern arc (Gresse 1994). 221 

In the outer Gariep Belt, particularly near the contact between the Holgat and Stinkfontein 222 

Groups (Port Nolloth Zone) development of sheath folds during transposition (Gresse 1994) 223 

reflects very high shear strains.  224 

Folds in the Gariep Belt change character and vergence around the Gariep Arc (see Fig. 225 

18 of Gresse 1994).  In the northeast outer arc, defined by the NE-trending Rosh Pinah thrust, 226 

the folds are more open, E-vergent and associated with E-directed thrusting. Southwards, around 227 

the arc where the Eksteenfontein thrust is N-trending these folds become tighter and isoclinal, 228 

and have SE-vergence.  Here, the early folds are overprinted by NE-vergent F2 folds (Gresse 229 

1994), associated with a N- to NW-trending crenulation cleavage suggestive of a late component 230 

of margin-orthogonal compression (cf. Fig. 4 of Frimmel 2000).  231 

In the Kaoko belt a zone of craton-vergent, basement-cored, isoclinal fold-nappes in the 232 

Central Kaoko Zone or Escape Zone (Fig. 5) appear to extrude from the dominant, medial Purros 233 

Mylonite Zone (Goscombe et al. 2005a, b). These fold-nappes coincide with a swing in the 234 

lineation pattern to higher angles (up to 70-80º) to the grain of the orogen, reflecting a 235 

component of high-angle escape towards the orogen margin (Dürr & Dingeldey 1996; 236 

Goscombe et al. 2003a, 2005a). The Orogen Core contains shear zone bounded domains of 237 

sheared migmatites with steep foliations and sub-horizontal lineations, a single domain of lower-238 

grade chevron folded turbidites and reworked basement gneiss slivers (Goscombe et al. 239 

2003a,b). Coastal Terrane migmatitic gneisses and orthogneisses were down-graded and 240 

heterogeneously reworked by steep mid-amphibolite facies foliations and discrete shear zones 241 

(Goscombe et al. 2005a). 242 
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The Damara Belt shows high-angle convergence (Fig. 5) and lacks evidence of oblique 243 

or transcurrent movements, despite arguments for sinistral movements and top-to-the-SW 244 

tectonic transport by Downing & Coward (1981) and Coward (1981, 1983).  Shear bands, 245 

developed in Kuiseb Formation schist and units of the Southern Margin Zone indicate north-246 

over-south movement in a N-S transport direction (Fig. 5). Variably N-dipping, asymmetric 247 

crenulations and mesoscopic folds reflect a bulk S- directed shear strain (Fig. 5). High-strain at 248 

the basement/cover contact is shown by deformed conglomerates in the cover (Chuos 249 

Formation), down-dip stretching lineations and mylonitic basement. The frontal lobes of the 250 

Hakos fold-nappe display prolate strains with the stretch direction at high angles to the transport 251 

direction as shown by shear bands. 252 

The Central Zone of the Damara Belt displays contrasting kinematic behaviour with 253 

orogen-parallel stretch and shortening at high angles to the orogen at different levels (Oliver, 254 

1994; Kisters et al. 2004). During high-grade metamorphism and migmatisation, the deeper 255 

levels of the Central Zone underwent pure shear deformation, with lateral orogen-parallel stretch 256 

(Kisters et al. 2004). This is in marked contrast to interpretations of SW-directed orogen-parallel 257 

extrusion (e.g. Downing & Coward 1981; Oliver 1994), where the domes were interpreted as 258 

large, SW-facing sheath folds rooted in the northeast Central Zone and requiring top-to-the-SW 259 

transport in a crustal scale shear zone (Downing & Coward 1981; Coward 1981, 1983). At 260 

shallower crustal levels the Central Zone has undergone crustal thickening, orogen-normal 261 

shortening by folding and NE-directed thrusting (Kisters et al. 2004). 262 

Within the Southern and Southern Margin Zones major S-directed bulk shear strain 263 

deformation was responsible for crustal-scale underthrusting of the Kalahari craton northwards 264 

(Fig. 4c), as well as continued thrusting and crustal thickening along the margins of the orogen. 265 

Crustal thickening and burial along this margin led to the Barrovian metamorphism. Significant 266 

magmatic underplating related to extension in the lower part of the overriding plate, led to 267 

marked magmatism and younger, high-T/low-P metamorphism in the Central Zone. 268 

 269 

 270 

Temporal aspects of deformation, metamorphism and magmatism of the 271 

Damara Orogen— Review 272 
 273 

Geochronological studies in the Kaoko Belt (Goscombe et al. 2005b), in the Damara Belt 274 

(Jung & Mezger 2003) and in the Gariep Belt (Frimmel & Frank, 1998), as well as a 275 
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geochronological/thermochronological study across the Damara Orogen (Gray et al. 2006) 276 

provide a more comprehensive picture of the tectonothermal evolution of the orogen (Fig. 6). 277 

The Kaoko Belt preserves evidence for three distinct metamorphic episodes; M1 (655-278 

645 Ma) restricted to the westernmost Coastal Terrane, M2 (580-570 Ma) and M3 (530-505 Ma) 279 

(see Goscombe et al. 2005a). Collision and docking of the outboard Coastal Terrane with the 280 

rest of the Kaoko Belt occurred after 645 Ma, but prior to 580 Ma at the onset of transpressional 281 

orogenesis and M2 metamorphism (Goscombe et al. 2005b). During transpression the Coastal 282 

Terrane rock sequences were reworked at lower strains and lower metamorphic grade compared 283 

to the rest of the Kaoko Belt (Goscombe et al. 2005b). Transpressional orogenesis in the Kaoko 284 

Belt and Ugab Zone had ceased by ~535 Ma, with cratonisation marked by intrusion of post-285 

kinematic granite and pegmatite between 535 Ma and 505 Ma (Goscombe et al. 2005b).  286 

The Damara and Gariep Belts show both younger deformation and metamorphism than 287 

the Kaoko Belt (Fig. 6; Gray et al., 2006). Continued high-angle convergence through 530 Ma in 288 

the Damara Belt coincides with large-scale open E-W trending folds in the Kaoko Belt 289 

(Goscombe et al. 2003a, b).  290 

The Gariep Belt underwent thrust-nappe emplacement onto the Kalahari craton at ~550-291 

540 Ma (Frimmel & Frank 1998).  Oceanic sequences in the Marmora Terrane preserve 1) an 292 

earlier seafloor metamorphism suggesting that Adamastor Ocean seafloor spreading was 293 

occurring at ~630 Ma, and 2) subduction-related metamorphism at ~580-570 Ma suggesting 294 

closure of the Adamastor Ocean was occurring at this time (Frimmel & Frank 1998). The Gariep 295 

Belt had cratonised by 520 Ma, with erosion into the Nama foreland basin commencing at ~540 296 

Ma  (Gresse & Germs 1993; Gresse 1994; Frimmel 2000). It was intruded by post-kinematic 297 

granites at ~507 Ma (Frimmel, 2000), although E-directed thrusting continued inboard within the 298 

Nama foreland basin through 496 Ma (Gresse et al. 1988).  299 

The Damara Belt shows a more complex high-T metamorphic history from 540-510 Ma 300 

with metamorphism coincident with pulses of magmatism (Jung & Mezger 2003). Intrusion of 301 

post-kinematic A-type granites from 495 Ma to 486 Ma (McDermott et al. 2000) was followed 302 

by cooling and exhumation of the Damara Belt through 470 Ma (Gray et al. 2006). 303 

 304 

Damara Orogen tectonic evolution— problems and issues 305 
 306 
Problems pertaining to Damara Orogen evolution that impact on Gondwana 307 

amalgamation relate to: 1) the positions of the respective cratons through time, 2) the sizes of the 308 

ocean basins between them, and 3) the positions and directions of subduction zones that closed 309 
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the ocean basins. Answers to problems 1) and 2) will require better definition of palaeomagnetic 310 

poles in the future, and particularly for that of the Kalahari craton in the period 750-550 Ma. The 311 

presence and/or lack of subduction zones to close the intervening ocean basins will now be 312 

addressed. 313 

 Intracratonic orogeny with exclusive ensialic evolution has been applied to the Damara 314 

Orogen, particularly for the Damara Belt (Kröner 1977; Martin & Porada 1977a, b; Porada 315 

1979). In this model the strongly deformed and metamorphosed Matchless Amphibolite is 316 

questioned as an ophiolite remnant, despite MORB-type geochemistry (Barnes & Sawyer 1980) 317 

and a chert-Cu/Zn mineralisation association (Killick, 2000) typical of oceanic lithosphere. The 318 

lack of subduction-related metamorphism is also cited as evidence against ocean closure due to 319 

subduction, although the presence of eclogites in the Zambezi Belt (John et al. 2003) and white 320 

schists in the Lufilian Arc (John et al. 2004), part of the continuation of the Damara Belt into 321 

Zambia, provide alternative evidence.   322 

In the Zambezi Belt, in contrast to Hanson et al. (1994) and Hanson (2003), John et al. 323 

(2003) argued for the presence of a large (>1000 km wide) ocean basin with MORB-type 324 

eclogites and metagabbros subducted to a depth of ~90 km during basin closure. The timing of 325 

the eclogite facies metamorphism is 595±10 Ma, suggesting that subduction was occurring at 326 

this time, some 60 m.y. earlier than the ~530 Ma peak metamorphism in the central Damara 327 

Belt.  328 

The long, apparently continuous, linear trace of the Matchless Amphibolite within 329 

intensely deformed Kuiseb Formation schist of the Southern Zone in the Damara Belt is unusual 330 

but may have similarities to the fault-bounded Dun Mountain Ophiolite belt and Haast Schist of 331 

New Zealand (Gray et al. in press). The transposed layering and pronounced schistosity in the 332 

Kuiseb Formation schist is almost identical to that of the central Otago part of the Haast Schist 333 

suggesting deformation under similar conditions in a scenario where the turbidite is on the 334 

down-going plate of an oceanic subduction system (see Coombs et al. 1976). In the Otago Schist 335 

an intermediate-T/intermediate-P (Barrovian-style) metamorphism linked to wedge thickening 336 

(Mortimer 2000) has almost totally eradicated the earlier subduction-related, intermediate- to 337 

high-P metamorphism (see Yardley, 1982). The older metamorphism is only preserved as 338 

crossite relics in the cores of younger amphibole and albite porphyroblasts (see Fig. 2c of 339 

Yardley 1982). Widespread metamorphic overprinting at higher temperatures appears typical of 340 

Barrovian-style thickened and metamorphosed accretionary wedges, and is therefore likely to 341 

have obliterated any older intermediate-P to high-P metamorphism in the Kuiseb Formation 342 

schists of the Southern Zone. 343 
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The kinematics of the Southern Zone schists, by comparison with the Otago Schist belt of 344 

New Zealand, combined with geochemistry of the more primitive diorites and syenites that are 345 

part of the Central Zone early magmatic history supports northward subduction of the Khomas 346 

Ocean lithosphere beneath the attenuated leading edge of the Congo Craton; as originally 347 

suggested by Barnes & Sawyer (1980) and Kasch (1983b) 348 

 349 

For the Kaoko Belt, the lack of ophiolite sequences or high-P metamorphism has led to 350 

intracratonic fold belt interpretations (Dürr & Dingeldy, 1996; Konopasek et al. 2005). More 351 

recently, the recognition of arc affinity for the Coastal Terrane has led to a subduction-related 352 

tectonic evolution, with subduction inferred to be both W-directed (Machado et al. 1996; 353 

Masberg et al. 2005) and further outboard E-directed subduction (Basei et al. 2000; Goscombe 354 

& Gray in review).  355 

If an ocean basin closed between the African and South American components of the 356 

Brasiliano—Pan-African orogenic system within the Kaoko Zone the suture would have to be at 357 

the proto-Three Palms Mylonite Zone. Evidence for major crustal displacements with 358 

juxtaposition of distinctly different aged basement either side of the Purros Mylonite Zone 359 

(Goscombe et al. 2003a,b), combined with the lack of ophiolite slivers and high-P 360 

metamorphism, suggests that both shear zones are part of a broad, complex “suturing” zone 361 

behind the former arc (i.e. in a back-arc position), between the arc and the African continental 362 

margin. This “suturing” involved high-T metamorphism of turbidites deposited on the 363 

attenuated leading edge of the Congo Craton and included deformation and reworking of the 364 

cratonic basement (Goscombe & Gray in review). This magmatic arc could well represent the 365 

continuation of the magmatic arc recognised in the Oriental Terrane of the Ribeira Belt 366 

(Heilbron et al. 2004) with similar ages and/or it could be part of the granite belt of the Dom 367 

Feliciano Belt. 368 

Another issue for the Kaoko Belt is the inferred 750-600 Ma timing of foreland basin 369 

evolution for the Congo craton (Prave 1996). This is problematical, in that the age of the 370 

Mulden Group is inconsistent with the 580-550 Ma and 530 Ma periods of deformation that 371 

have established the tectonothermal character of the Kaoko Belt (Goscombe et al. 2005a, b). It 372 

is folded and metamorphosed prior to the late-stage thrusting event (Sesfontein Thrust), and a 373 

750-600 Ma depositional age clearly predates the timing of peak (M2) metamorphism. If the 374 

published Mulden Group age range is correct then the sedimentary facies and erosional hiatus of 375 

Prave (1996) must reflect instability associated with the initial collision of the Coastal Terrane, 376 
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and therefore the Mulden Group sediments should contain a significant component of the 650 377 

Ma detrital zircons. 378 

 379 

An ensimatic, subduction-related origin has been accepted for the Gariep Belt, largely 380 

due to the Chameis Complex mélange of the Marmora Terrane with its mafic and ultramafic 381 

blocks, some of which contain Na-rich amphibole (Frimmel & Hartnady 1992). Although not 382 

strictly blueschist metamorphism, intermediate pressure (~6 kbar) and low temperature 383 

metamorphic conditions combined with the facies association of mélange (Chameis Complex), 384 

turbidites (Oranjemund Formation) and metavolcanics (Grootderm Formation) support this 385 

contention (see descriptions and discussions in Frimmel 2000). 386 

The direction of subduction has been discussed (see Frimmel et al. 1996), and recent 387 

provenance work on detrital zircon populations (Basei et al. 2005, this volume) supports W-388 

directed subduction beneath the Rio de la Plata Craton. This establishes continuity of a linked 389 

W- or N-directed subduction system that closed the former Adamastor and subsequently 390 

Khomas Oceans to form the Gariep Belt and then Damara Belt. 391 

 392 

 393 

Damara Orogen tectonic evolution in a global context 394 
 395 

West Gondwana amalgamation is shown in a series of global reconstructions for 396 

different time periods (after Collins & Pisarevski 2005) incorporating temporal and 397 

tectonothermal constraints from the Damara Orogen. In these tectonic reconstructions fragments 398 

of ophiolite and calc-alkaline volcanic rocks have been used as indicators of ocean closure, the 399 

ages of metamorphism and deformation indicate periods of accretion and crustal thickening, and 400 

the age of post-kinematic magmatism indicates the timing of cratonisation. 401 

 402 

780 Ma to 740 Ma (Fig. 7) 403 

 In our 750 Ma reconstruction the cratonic nuclei that eventually come together to form 404 

West Gondwana are separated by some 30° latitude with an ocean of unknown dimensions 405 

inferred between the Congo and Kalahari cratonic fragments. Such a reconstruction either 406 

contradicts or conflicts with previous interpretations of intracratonic rifting between these 407 

cratons, as represented by the Nosib rhyolites of the Congo margin and the Rosh Pinah volcanics 408 

of the Kalahari margin (see Fig. 7 of Frimmel & Frank 1998). 409 
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This is however, a difficult time to fully constrain the paleogeography.  There are no 410 

reliable late Neoproterozoic poles from the Kalahari craton.  Collins and Pisarevsky (2005) 411 

argued for a Kalahari-West Australia connection based partly on the presence of overlapping 412 

Grenvillian-age events in the Northampton Block (Australia) and the Namaqua-Natal belts 413 

(Kalahari craton).  Both the Kalahari craton and Australia have reliable palaeomagnetic poles of 414 

Grenvillian age (1050-1100 Ma; see Meert and Torsvik 2003; Pesonen et al. 2003).  These 415 

Grenvillian poles show a latitudinal offset between the Northampton Block and Kalahari of more 416 

than 30 degrees.  Thus, in our reconstruction, we show the Kalahari craton in proximity to the 417 

Congo- São Francisco craton, but detached from it.  The position of the Congo- São Francisco 418 

cratons is based on the 755 Ma Mbozi Complex pole (Meert et al. 1995).  419 

 420 

 421 

655 Ma to 600 Ma (Fig. 8) 422 

Subduction-related closure begins in the Northern Adamastor Ocean as evidenced by 423 

calc-alkaline magmatism in the Araçuaí and Ribeira Belts between 625 Ma and 585 Ma, in the 424 

Dom Feliciano Belt from 620 Ma to ~580 Ma (Basei et al. 2000), and from 655 Ma to 625 Ma in 425 

the Coastal Terrane of the Kaoko Belt (Masberg et al. 2005; Goscombe et al. 2005b). Collisional 426 

orogenesis was taking place in the Brasilano Orogen at ~640 Ma with nappe emplacements over 427 

the São Francisco Craton between 640 Ma and 630 Ma (Valeriano et al. 2004 and this volume), 428 

due to collision with the Paranapanema block, now hidden under the Paraná Basin. 429 

  At ~630 Ma seafloor spreading was underway in the Southern Adamastor Ocean as 430 

recorded by seafloor metamorphism in Marmora Terrane of the Gariep Belt (Frimmel & Frank 431 

1998). 432 

 433 

580 Ma to 550 Ma (Fig. 9) 434 

Arc-continent collision occurred in the Ribeira Belt (Rio Negro Arc: 595-560 Ma; 435 

Heilbron et al., 2004) and in the Kaoko Belt (Coastal Terrane: pre-580 Ma; Goscombe et al. 436 

2005b). Peak metamorphism in the Kaoko Belt occurred at ~580-570 Ma with transpressional 437 

reworking from 570-550 Ma (Goscombe et al. 2005b). 438 

 At this time (580-570 Ma) subduction-related metamorphism was taking place in the 439 

Southern Adamastor Ocean (Marmora Terrane, Gariep Belt; Frimmel & Frank 1998) with 440 

subduction-related ocean closure in the Khomas Ocean (560-550 Ma) suggested by mafic 441 

magmatism (diorites). 442 

 443 
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 444 

550 Ma to 500 Ma (Fig. 10) 445 

Closure of the Southern Adamastor Ocean occurred from ~550-540 Ma (Frimmel & 446 

Frank 1998) with oblique transpressional obduction of the Marmora Terrane oceanic suite over 447 

the imbricated passive margin sequence (Port Nolloth Zone, Gariep Belt) and initiation of Nama 448 

sequence foreland basin sedimentation (Gresse & Germs 1994).  449 

 Peak deformation/metamorphism took place in the Damara Belt through the Lufilian Arc 450 

into the Zambezi Belt at ~530-520 Ma (Goscombe et al. 2000; Jung & Mezger 2003; Singletary 451 

et al. 2003; John et al. 2003, 2004). The Damara Belt shows marked magmatism and high-452 

T/low-P metamorphism at this time (Kasch 1983). At the margins of the orogen, over-thrusting 453 

and related crustal thickening caused intermediate-T/intermediate-P (Barrovian-style) 454 

metamorphism (Northern Zone: Goscombe et al. 2004; Southern Zone: Kasch 1983; Kukla 455 

1993) with thrusting of the passive margin sequences back over the cratonic nuclei (Naukluft 456 

Nappes: ~500 Ma; Ahrendt et al. 1977). Effects of the Damara Belt collisional deformation are 457 

seen as broad warpings and a younger thermal and magmatic event (M3: 530-505 Ma) in the 458 

Kaoko Belt (Goscombe et al. 2005b). 459 

In the Cabo Frio Domain of the Ribeira Belt relatively high pressure and high 460 

temperature metamorphism at 530-510 Ma is interpreted as related to collision (Schmitt et al. 461 

2004). 462 

 463 

505 Ma to 480 Ma (Fig. 11) 464 

Inboard transmission of stress from the outboard, Gondwana margin (Ross-Delamerian) 465 

subduction system caused continued thrusting (Naukluft Nappes: 500-495 Ma; Ahrendt et al., 466 

1983) and syn-tectonic sedimentation in the Nama foreland basin (Ahrendt et al. 1983; Gresse et 467 

al. 1988; Gresse & Germs 1993) and in the Camaquã and Itajaí Basins of Brazil (Gresse et al. 468 

1996). It also led to shear zone reactivation in the Kaoko Belt (490-467 Ma; Gray et al. 2006) 469 

and Gariep Belt (506-495 Ma; Frimmel & Frank 1998). 470 

Emplacement of post-tectonic A-type granites occurred in the Central Zone (McDermott et 471 

al. 2000) with continued cooling and exhumation in the Damara Belt through 480 Ma (Gray et 472 

al. 2006). 473 

 474 
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Significance for Gondwana assembly 475 

From a western African perspective assembly of Gondwana shows complex suturing, that 476 

does not reflect a simple final amalgamation of East and West Gondwana (Fig. 12).  It is perhaps 477 

better described as an amalgamation of North (São Francisco-Congo-India) and South (Kalahari-478 

Antarctica) Gondwana during the Kuunga Orogeny (550-530 Ma), as proposed by Meert (2003) 479 

and Boger & Miller (2004) for the assembly of eastern Gondwana. Geochronologic data from 480 

South America and southwestern Africa (Fig. 6) suggest closure of a Khomas-Mozambique 481 

Ocean from 530-500 Ma, as part of a combined Damara-Kuunga Orogeny.  The composite 482 

Kuunga-Damara Orogen incorporates the Damara Orogen of Namibia, the Lufilian Arc and 483 

Zambezi Belt of Zambia, and joins the Lurio Belt of Mozambique and a belt made up of the 484 

Napier Complex of Antarctica, and the Eastern Ghats of India. It has dimensions comparable to 485 

the younger Ross-Delamerian Orogen (Fig. 12). 486 

Global reconstructions based on palaeomagnetic data suggest larger separations, and 487 

therefore significant ocean basins between the Rio de la Plata, Congo and Kalahari cratonic 488 

nuclei that eventually define West Gondwana. This has a requirement of ensimatic subduction-489 

related ocean closures, rather than ensialic, intracratonic evolutions that were originally 490 

proposed to explain many of the Brasiliano—Pan-African orogens.  The position of the Kalahari 491 

Craton however, remains controversial. In the Collins & Pisarevski (2005) reconstructions the 492 

Kalahari Cratron abuts against the West Australian side of the Australian Craton (Fig. 6 this 493 

paper), whereas in Meert (2003, his Fig. 1) it is situated outboard of a conjoined East Antarctica-494 

Laurentia surrounded by Congo-São Francisco and Rio de la Plata. From an African perspective 495 

this provides a better fit for Gondwana assembly as shown in Figures 7 through 11 in this paper. 496 

The West Gondwana suture between Africa and South America reflects the closure of the 497 

Adamastor Ocean, and provides the most detailed evolution sequences for southwest Gondwana 498 

assembly (Fig. 12b). The Brasiliano Orogens of South America show more complicated tectonic 499 

evolution with multiple tectonothermal events (see also Fig. 6), although the Dom Feliciano and 500 

Ribeira Belts, flanking the Rio De La Plata Craton, experienced collisional orogenesis with a 501 

transpressional component at the same time as the main phase deformation in the Kaoko Belt 502 

(Frantz & Botelho 2000; Heilbron & Machado 2003; Heilbron et al. 2004; Goscombe et al. 503 

2005b). The collisional stage in the Ribeira Orogen was at 590-560 Ma and is characterised by 504 

terranes juxtaposed by relatively steeply dipping, dextral transcurrent shear zones (Heilbron et 505 

al. 2004). In the Kaoko Belt collision immediately pre-dates main phase orogenesis in the 506 

period from 580-550 Ma (Goscombe et al., 2005b). 507 
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The linkage between the Brasiliano and Damara Orogens is a ~680-580 Ma magmatic arc 508 

component along the 2800 km long composite orogenic system (Fig. 2). In the former 509 

Adamastor Ocean, records of arc magmatism suggest a more complex tectonic evolution than 510 

perhaps a simple southwards migration of ocean closure, although this appears to be the case in 511 

the Brasiliano-Ribeira-Kaoko-Dom Feliciano-Gariep part of the orogenic system.  512 

Arc magmatism varies from 680-670 Ma in the Brasiliano-Ribeira Belts along the west 513 

side of the São Francisco Craton (Heilbron et al. 2004), to 650-640 Ma in the Coastal Terrane of 514 

the Namibian Kaoko Belt (Seth et al. 1998; Franz et al. 1999), and from 620-580 Ma in the 515 

granite belt of the Dom Feliciano Belt (Basei et al. 2000). Southward migration of arc 516 

magmatism is further suggested by southward younging of the granite batholiths within the 517 

“granite belt” of the Dom Feliciano Belt; northernmost Florianopolis Batholith has an age of 518 

~620Ma, the centrally located Pelotas Batholith an age of ~610 Ma, and the southernmost Aguia 519 

Batholith an age of ~ 580 Ma (Basei et al. 2000). 520 

A 630-585 calc-akaline magmatic arc in the Araçuaí Belt suggests that the main arc system 521 

may have followed the Brasiliano Belt trend around the São Francisco Craton, rather than 522 

through the Araçuaí Orogen, which shows a younger subduction-related closure of a Red Sea-523 

type rift arm of the Adamastor Ocean (cf. Alkmin et al. 2006). 524 

 525 

In summary, the closing of the Adamastor and Khomas Oceans between three continental 526 

or cratonic blocks, the Rio de la Plata, Congo and Kalahari Cratons resulted in a three-fold 527 

orogenic system or collisional triple junction during the welding of the Gondwana 528 

supercontinent. The differences in timing between deformation, metamorphism, and magmatism 529 

of the component belts of the Damara Orogen provide a history of Gondwana suturing that is 530 

more refined than the palaeomagnetic data that indicate these cratonic nuclei were together by 531 

550 Ma.   532 
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 843 
Figure Captions 844 

 845 

Fig. 1: Map of Gondwana showing the positions of the cratonic nuclei and the orogenic belts 846 

that weld the supercontinent together. The younger orogens occur along the supercontinent 847 

margins. The map region shown in Fig. 2 is outlined by the heavy-lined box. 848 

 849 

Fig. 2: Map of the Brasiliano and Pan-African Orogens defining the amalgamation sutures of 850 

West Gondwana between the South American and African cratonic nuclei. The composite 851 

orogenic system is made up different component belts and orogens, including from north to 852 

south the Araçauí-West Congo orogen, the Ribeira Belt, the Dom Feliciano- Kaoko Belts and 853 

the Gariep Belt.  Data from the Araçauí Orogen are from Pedrosa-Soares et al. (2001), the 854 

Ribeira Belt from Heilbron & Machado (2003), the Dom Feliciano Belt from Basei et al. (2000) 855 

and Frantz & Botelho (2000), and the Kaoko Belt from Goscombe et al. (2003a, b; 2005a, b). 856 

 857 

Fig.3: Geologic map of the Damara Orogen showing the main geological units, the major faults, 858 

and the distribution of plutonic rocks and Swakop Group turbidites (map modified from 859 

geological map of Namibia). Inset a) shows the relative positions of the component fold belts 860 

and the Congo and Kalahari Cratons. The locations of profiles A-A’, B-B’ and C-C’ from Fig. 4 861 

are shown.  862 

WKZ: Western Kaoko Zone; CKZ: Central Kaoko Zone; EKZ: Eastern Kaoko Zone (Kaoko 863 

Belt).  864 

AF: Autseib Fault; OmSZ: Omaruru Shear Zone; OkSZ: Okahandja Shear Zone; NZ: Northern 865 

Zone; CZ: Central Zone; SZ: Southern Zone; SMZ: Southern Margin Zone (Damara Belt).  866 

MT: Marmora Terrane; PNZ: Port Nolloth Zone (Gariep Belt). 867 

 868 

Fig. 4: Simplified structural profiles across the Kaoko, Gariep and Damara Belts of the Damara 869 

Orogen. a) Crustal architecture of the Kaoko Belt (modified from Goscombe et al. 2003a). b) 870 

Crustal architecture of the Gariep Belt (modified from Von Veh 1983 in Frimmel and Frank, 871 

1998). c) Crustal architecture of the Damara Belt of the Damara Orogen (modified from Miller 872 

& Grote 1988: profiles on Damara Orogen 1:500,000 Map sheets). For location of the profiles 873 

see Fig. 1.  Note a) and c) are transpressional belts underlain by inferred W-dipping 874 

décollements, and b) shows an asymmetric orogen profile with an inferred former subduction 875 

interface, now thrust/shear zone system, penetrating to Moho depth beneath the Southern Zone. 876 
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 877 

Fig. 5: Summary map of deformation kinematic data for the Damara Orogen with insets 878 

providing a summary of the timing of key geologic processes for each of the component fold 879 

belts. Kinematic data is based on the author’s unpublished Namibian dataset.  Note the fold 880 

vergence direction is drawn orthogonal to regional fold hinge lines. 881 

TPMZ: Three Palms Mylonite Zone; PMZ: Purros Mylonite Zone; NZ: Northern Zone; CZ: 882 

Central Zone; SZ: Southern Zone; SMZ: Southern Margin Zone; PNZ: Port Nolloth Zone 883 

(Gariep Belt) 884 

 885 

Fig. 6: Damara Orogen and part of the Brasiliano time-space plot of recently published 886 

geochronological data including the 40Ar/39Ar data from Gray et al. (2006), and U-Pb data on 887 

zircon, monazite and titanite. Sources are listed in the figure.  Unsourced data is from Gray et al. 888 

(2006). The diagram highlights the major periods of magmatism, metamorphism/deformation, 889 

thrusting and cooling and exhumation.  Fault and shear zone abbreviations are as listed. 890 

WKZ: Western Kaoko Zone; CKZ: Central Kaoko Zone; EKZ: Eastern Kaoko Zone; TPMZ: 891 

Three Palms Mylonite Zone; VMZ: Village Mylonite Zone; PMZ: Purros Mylonite Zone; AMZ: 892 

Ahub Mylonite Zone; ST: Sesfontein Thrust; GMZ: Guantegab Mylonite Zone; OmL: Omaruru 893 

Lineament (Shear Zone); OkL: Okahandja Lineament (Shear Zone) 894 

JC-TCSZ: Jacutinga-Três Corações Shear Zones; MGSZ-CSZ-SBSZ: Major Gercino Shear 895 

Zone-Cordilhera Shear Zone-Sierra Ballena Shear Zone 896 

 897 

Fig. 7:  Global reconstruction of continents at 780-740 Ma with enlargement b) showing the key 898 

geological constraints during this time period from the Congo, Kalahari and São Francisco  899 

Cratons prior to the development of the Pan-African—Brasiliano orogenic system. 900 

Reconstruction a) is based on Fig. 2 of Collins & Pisarevski (2005).  901 

Continental fragments are Az:  Azania; SF: São Francisco; RP: Rio de la Plata; Sah: Saharan; 902 

Laur: Laurentia; WA: West Africa 903 
1: Hoffman et al. (1996); 2: Frimmel et al. (1996); 904 
 905 

Fig. 8:  Global reconstruction of continents at 655-600 Ma with enlargement b) showing 906 

palaeogeographic lithofacies distributions and the key geological constraints during this time 907 

period from the Congo, Kalahari and São Francisco  Cratons prior to the development of the 908 

Pan-African—Brasiliano orogenic system. Reconstruction a) is based on Fig. 3 of Collins and 909 
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Pisarevski (2005). Traces of subduction zones are shown by heavy lines with barbs, where the 910 

barbs are drawn on the upper plate side and designate the subduction zone dip. 911 

CT: Coast al Terrane of the Kaoko Belt (shown as magmatic arc); MT: Marmora Terrane of the 912 

Gariep Belt (shown as oceanic lithosphere) 913 
3: Masberg et al. (2005); 4: Franz et al. (1999); 5: Seth et al. (1998); 6: Goscombe et al. (2005); 7: Frimmel and 914 
Frank (1998); 915 
 916 

Fig. 9:  Global reconstruction of continents at 580-550 Ma with enlargement b) showing 917 

palaeogeographic lithofacies distributions and the key geological constraints during this time 918 

period from the Congo, Kalahari and São Francisco  Cratons prior to the development of the 919 

Pan-African—Brasiliano orogenic system. Reconstruction a) is based on Fig. 4 of Collins and 920 

Pisarevski (2005). Traces of subduction zones are shown by heavy lines with barbs, where the 921 

barbs are drawn on the upper plate side and designate the subduction zone dip. 922 

CT: Coast al Terrane of the Kaoko Belt (shown as magmatic arc); MT: Marmora Terrane of the 923 

Gariep Belt (shown as oceanic lithosphere) 924 
6: Goscombe et al. (2005b); 7: Frimmel & Frank (1998); 8: Jacob et al. (2000); 9: de Kock et al. (2000); 925 
 926 
Fig. 10:  Global reconstruction of continents at 550-505 Ma with enlargement b) showing 927 

palaeogeographic lithofacies distributions and the key geological constraints during this time 928 

period from the Congo, Kalahari and São Francisco Cratons during the development of the Pan-929 

African—Brasiliano orogenic system. Reconstruction a) is based on Fig. 6 of Collins and 930 

Pisarevski (2005). Traces of subduction zones are shown by heavy lines with barbs, where the 931 

barbs are drawn on the upper plate side and designate the subduction zone dip. The thinner 932 

heavy lines in b) are fault traces. 933 

PMZ: Purros Mylonite Zone and TPMZ: Three Palms Mylonite Zone of the Kaoko Belt  934 
Data sources are 6: Goscombe et al. (2005b); 7: Frimmel & Frank (1998); 8: Jacob et al. (2000); 9: de Kock et al. 935 
(2000); 10: Jung & Mezger (2003); 11: Gresse & Germs (1993) 936 
 937 
Fig. 11:  Global reconstruction of continents at 505-480 Ma with enlargement b) showing 938 

palaeogeographic lithofacies distributions and the key geological constraints during this time 939 

period from the Congo, Kalahari and São Francisco  Cratons during the development of the Pan-940 

African—Brasiliano orogenic system. Reconstruction a) is based on Fig. 6 of Grunow et al. 941 

(1996). Traces of subduction zones are shown by heavy lines with barbs, where the barbs are 942 

drawn on the upper plate side and designate the subduction zone dip. The thinner heavy lines in 943 

b) are fault traces. 944 
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PMZ: Purros Mylonite Zone and TPMZ: Three Palms Mylonite Zone of the Kaoko Belt  945 
Data sources are 6: Goscombe et al. (2005b); 11: Gresse & Germs (1993); 12: Gray et al. (2006); 13: Gresse et al. 946 
(1988); 14: Ahrendt et al. (1977); 15. Gresse et al. (1996). 947 
 948 

Fig. 12: Ages of orogenic suturing across Gondwana (modified from Fig. 10 of Meert, 2003). 949 

The Gondwana reconstruction shows the various component orogens, the orogenic ages (bold 950 

italic) reflecting the timing of peak metamorphism/deformation, and post-orogenic ages (normal 951 

font) reflecting post-tectonic magmatism and therefore the timing of cratonisation, for each of 952 

the component belts.  The inset b) is an enlargement of the West Gondwana suture resulting 953 

from the closure of the Adamastor Ocean. The cratons include SF (São Francisco), LA (Luis 954 

Alves), RP (Rio de la Plata), Kal (Kalahari), Congo, India and Antarctica. 955 

Component belts are BB: Brasilia Belt; AB: Araçuaí Belt; RB: Ribeira Belt; KB: Kaoko Belt; 956 

DFB: Dom Feliciano Belt; GB: Gariep Belt; SB: Saldania Belt; DB: Damara Belt; LA: Lufilian 957 

Arc; ZB: Zambezi Belt. Data sources are shown on the figure. 958 
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