GR Focus Review

Ediacaran–Early Ordovician paleomagnetism of Baltica: A review

Joseph G. Meert *

Department of Geological Sciences, 241 Williamson Hall, University of Florida, Gainesville, FL 32611, United States

ABSTRACT

The Ediacaran–Early Ordovician interval is of great interest to paleogeographer's due to the vast evolutionary changes that occurred during this interval as well as other global changes in the marine, atmospheric and terrestrial systems. It is; however, precisely this time period where there are often wildly contradictory paleomagnetic results from similar-age rocks. These contradictions are often explained with a variety of innovative (and non-uniformitarian) scenarios such as intertial interchange true polar wander, true polar wander and/or non-dipolar magnetic fields. While these novel explanations may be the cause of the seemingly contradictory data, it is important to examine the paleomagnetic database for other potential issues.

This review takes a careful and critical look at the paleomagnetic database from Baltica. Based on some new data and a re-evaluation of older data, the relationships between Baltica and Laurentia are examined for ~600–500 Ma interval. The new data from the Hedmark Group (Norway) confirm suspicions about possible remagnetization of the Fen Complex pole. For other Baltica results, data from sedimentary units were evaluated for the effects of inclination shallowing. In this review, a small correction was applied to sedimentary paleomagnetic data from Baltica. The filtered dataset does not demand extreme rates of latitudinal drift or apparent polar wander, but it does require complex gyrations of Baltica over the pole. In particular, average rates of APW range from 1.5° to 2.0°/Myr. This range of APW rates is consistent with 'normal' plate motion although the total path length (and its oscillatory nature) may indicate a component of true polar wander. In the TPW scenario, the motion of Baltica results in a back and forth path over the south pole between 600 and 550 Ma and again between 550 and 500 Ma. The rapid motion of Baltica over the pole is consistent with the extant database, but other explanations are possible given the relative paucity of high-quality paleomagnetic data during the Ediacaran–Cambrian interval from Baltica and other continental blocks.

A sequence of three paleogeographic maps for Laurentia and Baltica is presented. Given the caveats involved in these reconstructions (polarity ambiguity, longitudinal uncertainty and errors), the data are consistent with geological models that posit the opening of the Iapetus Ocean around 600 Ma and subsequent evolution of the Baltica–Laurentia margin in the Late Ediacaran to Early Ordovician, but the complexity of the motion implied by the APWP remains enigmatic.

© 2013 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
1. Introduction

The Ediacaran period (635–542 Ma; Knoll et al., 2006) is one of the more intriguing intervals of geologic time. The onset of the Ediacaran corresponds to the approximate end of the so-called “Snowball glaciations” and the terminal Ediacaran (~542 Ma) is followed by a great radiation of life forms commonly referred to as the ‘Cambrian Explosion’. There are myriad explanations for why the fossil record becomes richer (with larger organisms) during the Cambrian (see Meert and Lieberman, 2008 for a review). While there are proposals for both extrinsic (non-biological) and intrinsic (biological) triggers for the radiation, the paleogeography of the Ediacaran–Cambrian provided an important backdrop for the biological changes. The precise paleogeography for the Ediacaran–Cambrian is the subject of significant controversy particularly for Laurentia and Baltica (Meert et al., 1993, 1994; Kirschvink et al., 1997; Evans, 1998; Meert, 1999; Popov et al., 2002; Meert et al., 2003a; Nawrocki et al., 2004; Iglesia Llanos et al., 2005; McCausland et al., 2007; Meert et al., 2007; Pisarevsky et al., 2008; Abrajевич and Van der Voo, 2010; McCausland et al., 2011). It has been argued that the Ediacaran Period was also a time where continents underwent rapid changes in their latitudinal positions due to unusually rapid plate motions (Meert et al., 1993), inertial interchange true polar wander (Kirschvink et al., 1997), true polar wander (Evans, 1998) or interactions with superplumes (Meert and Tamrat, 2004; Abrajевич and Van der Voo, 2010) argue that the seeming complexities of continental motion in the Ediacaran–Cambrian are the result of the geomagnetic field switching between a dominant axial dipole field and an equatorial dipole field.

This paper presents a review of paleomagnetic data from Baltica in an attempt to further constrain its paleogeographic history. This paper reviews each previously published paleomagnetic study and divides the results into groups of (1) highly reliable A grade poles; (2) seemingly reliable B grade poles and (3) questionable C–D grade paleomagnetic poles. Highly reliable poles generally have field tests that demonstrate their primary nature, are part of the stable continent and are not likely to have suffered from inclination shallowing (see Tauxe and Kent, 2004; Tauxe et al., 2008). Inclination shallowing is relatively common in fine-grained red sandstones and results in paleolatitudes that are systematically lower than coeval igneous rocks (see Gilder et al., 2003). Inclination-shallowing ‘error’ is more pronounced at mid-latitudes and can be evaluated via the error formula of King (1955) where:

\[\tan I_0 = f \tan I_1 \]

(see Fig. 1).

The flattening factor (f) is equal to 1.0 for rocks that exhibit no inclination shallowing. Most experimental results show flattening values in the range from 0.4 to 0.55 (King, 1955; Tauxe and Kent, 1984; Hodych and Bijakansa, 1993) for clastic sedimentary rocks.

“B-class” poles have field tests that demonstrate their primary nature and are part of the stable continent but may be affected by inclination shallowing. ‘C–D’ class poles will fail to meet several traditional ‘stability’ criteria. For example, C–D results may not have field tests to constrain the age of magnetization, may not be located on the stable continent, may result from limited sampling or may show strong evidence of younger overprinting. There are certainly other schemes that can be applied to paleomagnetic data (e.g. Van der Voo, 1990); however, this simpler scheme is useful for evaluating the paleomagnetic data for Baltica during the Ediacaran–Cambrian interval. The Q-factor is included as an additional measure of reliability in the analysis.

Table 1 lists all known paleomagnetic studies for Baltica during the interval from 635 to 458 Ma. We include Early Ordovician data because they form a useful ‘anchor-point’ for evaluating plate motion rates required by the Ediacaran–Cambrian paleomagnetic data. The Early Ordovician mean pole falls at 25°N, 54°E (AS5 = 10.9°; Torsvik and Trench, 1991; Smethurst et al., 1998; Khramov and Iossifidi, 2009).

Please cite this article as: Meert, J.G., Ediacaran–Early Ordovician paleomagnetism of Baltica: A review, Gondwana Research (2013), http://dx.doi.org/10.1016/j.gr.2013.02.003

Pole name & Class & Q\(^a\) & Dec\(^b\) & Inc\(^c\) & Flinc\(^d\) & f95\(^e\) & GLat\(^f\) & CLon\(^g\) & Plat\(^h\) & Plon\(^i\) & Age\(^j\) \\
--- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
1. Swedish limestones & A & 5 & 335 & −52 & − & 13.4 & 58.3 & 13.9 & 3 & 35 & 458 \\
5. St Petersburg limestone & A & 5 & 130.4 & 73.1 & − & 3.6 & 58 & 30 & 33 & 58 & 478 \\
6. Narva sediments & C & 5 & 106 & 54 & 66.5 & 5 & 59 & 28 & 22 & 87 & 500 \\
7. Andarum–ulum Shale & C & 4 & 51 & 57 & 68.7 & 6.8 & 55.7 & 14 & 52 & 111 & 500 \\
8. Tornetrask Fm/Dividal group & C & 4 & 57 & 66 & 75 & 8.9 & 68.2 & 19.5 & 56 & 115 & 535 \\
9. Neksa sandstone & C & 3 & 194 & −12 & −19.5 & 7 & 55 & 15 & 40 & 177 & 545 \\
10. Zolotitsa & C & 6 & 298.9 & 37.7 & 52.2 & 2.3 & 65.5 & 40.0 & 32 & 293 & 550 \\
11. Verkhotina & A & 5 & 305 & 35.9 & 50.3 & 2.2 & 64.8 & 40.5 & 32 & 297 & 550 \\
12. Volhynia Lava–Rafalikva & C & 4 & 269 & 66 & − & 2.4 & 52.8 & 28.3 & 36 & 333 & 551 \\
13. Winter Coast & C & 3 & 114 & −26 & − & 3.9 & 52.8 & 28.3 & 26 & 282 & 551 \\
14. Arkhangelsk–Zolotica & B & 6 & 120 & −31.7 & −43.5 & 3.9 & 65.6 & 40.5 & 28 & 290 & 555 \\
15. Podolia & C & 6 & 132.2 & −32.2 & −46.4 & 5.5 & 48.7 & 27.5 & 40 & 276 & 560 \\
16. Basu Formation (tc) & C & 5 & 42 & −37 & −51.5 & 12.2 & 54.0 & 57.0 & −1 & 007 & 560 \\
17. Fen Complex & D & 4 & 203 & −49 & − & 8 & 59.3 & 9.3 & 57 & 152 & 583 \\
18. Alna steep & D & 4 & 51.2 & 70.2 & − & 8.3 & 62.5 & 17.5 & 63 & 101 & 589 \\
19. Alna shallow & D & 3 & 108 & 105 & − & 32.1 & 62.5 & 17.5 & 4 & 269 & 589 \\
20. Alna Piper & D & 3 & 107.2 & 1.6 & − & 9.3 & 62.5 & 17.5 & 8 & 272 & 589 \\
22. Moelv Tillite (ls) & D & 2 & 186 & −54 & −66.4 & 4.2 & 61.1 & 11.4 & 63 & 180 & −610 \\
23. Nyborg Formation & C & 4 & 110 & 53 & 65.7 & 18 & 70.1 & 28.7 & 24 & 089 & −635 \\

Notes: References by pole number (1, 2, 3) Torsvik and Trench (1991); (4) Khramov and Iosiﬁd (2009); (5) Smethurst et al. (1998); (6) Khramov and Iosiﬁd (2009); (7, 8) Torsvik and Rehnström (2001); Rehnström and Torsvik (2003); Bylund (1994); (9) Lewandowski and Abrahamsen (2003); (10, 11) Popov et al. (2005); (12) Nawrocki et al. (2004); (13) Popov et al. (2002); (14) Iglesia Llanos et al. (2005); (15) Iosiﬁd and Khramov, 2005; (16) Golovanova et al. (2011); (17) Meert et al. (1998); (18, 19) Meert et al. (2007); (20) Piper (1981); (21) Walderhaug et al. (2007); (22) this study, (23) Torsvik et al. (1995); (24, 25) Mean overprints from Khramov and Iosiﬁd (2009), (26) Mean from Domínguez et al. (2011).

Italics signify F-corrected inclination.

\(a \) Q-value based on Van der Voo (1990).
\(b \) Declination.
\(c \) Inclination.
\(d \) Flatting corrected inclination (f=0.6) for clastic sediments.
\(e \) Alpha-95 circle of 95% confidence about the mean direction.
\(f \) Site Latitude.
\(g \) Site Longitude.
\(h \) Paleomagnetic pole latitude.
\(i \) Paleomagnetic pole longitude.
\(j \) Age determination by pole (1–9,15) fossils; (10–14) U–Pb zircon; (16–20) 40Ar/39Ar biotite; (21) U–Pb zircon and 40Ar/39Ar biotite; (16, 22, 23) Stratigraphic correlation.

Permo-Triassic poles

24. Secondary components & 9 & 59 & 153 & −200 \\
25. Secondary components & 8 & 42 & 159 & −265 \\
26. Igneous rocks-Stable Europe & 4 & 52 & 161 & 270 \\

2.2. "B" Grade paleomagnetic poles

Each of the poles discussed in this section is part of the stable Baltica continent and has evidence for their primary nature (field tests or reversal test), but may suffer from inclination shallowing (Table 1; Fig. 2). These results (Fig. 1b) are all from sedimentary rocks from the White Sea area of northern Russia, the Podolia region (Ukraine) and the Narva River region (near St. Petersburg, Russia). The most consistent set of results come from Late Ediacaran (~550–555 Ma) sedimentary sequences along the Winter Coast region (Fig. 2; Popov et al., 2002; Iglesia Llanos et al., 2005; Popov et al., 2005). The AZV triad of poles (Archangelsk, Zolotitsa and Verkhotina) plot closely to one another although slightly displaced from the Winter Coast pole. Sedimentary sequences from the Podolia region of the Ukraine (Fig. 1b; Iosiﬁd and Khramov, 2005) although paleomagnetic data from Podilia are of lower reliability (Fig. 2).

Since these paleomagnetic poles are derived from studies of fine-grained sedimentary rocks, there is some concern about inclination shallowing in those sediments. One possible test for inclination shallowing is to compare coeval sedimentary and volcanic rocks (see Van der Voo and Torsvik, 2004). If there are systematic inclination differences between sedimentary rocks and coeval igneous rocks, then inclination shallowing is a concern and a correction can be applied to the
sedimentary data. There are coeval igneous rocks from the Volhynia lavas (Ukraine), but they pose an interesting conundrum. One of the poles (Volhynia lavas-B, Table 1; Fig. 2) is indistinguishable from the AZV triad whereas the other (Volhynia lavas-R; Table 1, Fig. 2) shows steeper inclinations. Due to the limited number of cooling units sampled, the Volhynia lava results do not adequately average secular variation and cannot be used as an argument for or against inclination shallowing.

In an effort to evaluate inclination shallowing in the Archangelsk sediments, we attempted to use the elongation–inclination (E–I) method employed by Tauxe and Kent (2004) as applied to the Zolotica–Arkhangelsk results (Iglesia Llanos et al., 2005). The E–I method is based on a paleosecular variation model for the past 5 Ma and requires numerous ‘spot’ readings of the magnetic field in order to provide an adequate sample for comparison. In sedimentary rocks, each sample represents a ‘spot-reading’ of the field. Based on theoretical examples, Tauxe et al. (2008) show that for datasets with n ~ 100 sites, the confidence bounds on both E and I are large and estimates of flattening using this method are less reliable. Furthermore, the density of sampling must be high and ‘sites’ that incorporate more than one sample will invariably ‘smooth’ out the secular variation signal resulting in an underestimate of inclination shallowing (Kodama, 2012).

The Iglesia Llanos et al.’s (2005) study contains data from 140 sites covering a stratigraphic interval of ~9 m. In principle, this would meet the requirements of the E–I method, but there are several complicating factors. The complications arise due to the fact that some site means are determined by great-circle analysis, many stratigraphic intervals are represented by more than one sample and directional data are sometimes not fully resolved due to overlapping magnetite/hematite unblocking temperatures. Iglesia Llanos et al. (2005) base their overall mean on only 57 sites that show ‘only fully normal or fully reverse directions’. The characteristic direction (Dec = 120.3°, Inc = −31.7°, α95 = 3.9°, k = 22) in that study was isolated at temperatures >620 °C.

A review of the data used in the Iglesia Llanos et al.’s (2005) study indicates that additional sites might be used to evaluate the overall mean direction. Using unblocking temperature (Tub) as a criteria for limiting overlapping unblocking spectra, we compiled a list of 96 sites where Tub >620 °C. In this analysis, approximately 96 sites were initially used to evaluate inclination shallowing. The mean direction of those 96 sites was Dec = 125°, Inc = −31° (α95 = 4.2°, k = 13; Fig. 3a). Fig. 3b shows the results of the E–I analysis using this dataset. The crossover point is at 54° (f ≈ 0.4) with a range of f-values between 0.25 and 0.6 (E-range 1.300–1.865). The dispersion in this collection...
(k = 13) is higher than in the mean (k = 22) reported by Iglesia Llanos et al. (2005) and suggests that overprinting of components may be problematic.

A second analysis was conducted by further restricting the dataset to only sites that fall in the southeastern quadrant (Fig. 3c) in an effort to limit dispersion and more closely approximate the mean in the original study. The mean of these 92 sites was Dec = 124.9°, −30.7° (α95 = 3.9°, k = 16). Fig. 3d shows the results of the E–I analysis using this dataset. The crossover point is at 49.5° (f~0.5) with a range of f-values between 0.34 and 0.65 (E-range 1.473–1.976).

Fig. 3. Elongation–Inclination (E–I) test on the paleomagnetic results of Iglesia Llanos et al. (2005). (a) Distribution of mean directions for the study for sites with N≥2 and unblocking temperatures (Tub) >620 °C (b) Results of the eccentricity of the distribution versus unflattened inclination. The 'crossing' inclination is at 56° with a resultant flattening factor of 0.4, bottom figure shows a bootstrap simulation to determine the 95% confidence interval for the flattening factor (0.3–0.7) (c) distribution of mean directions for the study for sites with N≥2, unblocking temperatures (Tub) >620 °C and directions confined to the SE-quadrant; (d) Results of the eccentricity of the distribution versus unflattened inclination. The 'crossing' inclination is at 44° with a resultant flattening factor of 0.6, bottom figure shows a bootstrap simulation to determine the 95% confidence interval for the flattening factor (0.46–0.85).
Given the caveats stated above, the E–I analysis of the Zolotica results indicates that these sediments are affected by inclination shallowing with f-values ranging between F–0.3 and 0.7.

Due to the lack of dense sampling, we were unable to apply the E–I method to the other sedimentary sequences in Podolia or the Winter Coast sedimentary rocks (results 10, 11, 13 and 15 in Table 1). We thus followed the suggestion made by Torsvik et al. (2012) and corrected all results from clastic sediments using a ‘conservative’ estimate for flattening \(f = 0.6 \) (Fig. 1a). Flattening corrected poles are shown in Fig. 2 (light-blue shading). Note that after inclination shallowing is applied, the Podolia pole and the AZV triad mean pole overlap, but the pole from the Winter Coast sediments is still distinct. The Winter Coast pole does move closer to the Volhynia Lavas-R direction (Fig. 2).

The Late Cambrian Narva sediment pole (500 Ma) was also derived from fine-grained sediments and was corrected for inclination shallowing (\(f = 0.6 \); Fig. 2).

2.3. "C" Grade paleomagnetic poles

C-grade poles may have some use in paleogeographic reconstructions, but they are too poorly resolved to make a strong case for any particular geodynamic model. These poles should be viewed with extreme caution. C-poles may be useful in evaluating apparent polar wander paths, but only as complimentary points anchored by A or B poles. C-poles will generally have one or more complications that preclude their use as anchor poles along an APWP.

In reviewing paleomagnetic data from Baltica, there are five poles that retain a C-rating. Three of the five poles are derived from tectonically complicated regions. The Tornetrask/Dividal results (Torsvik and Rehnström, 2001; Rehnström and Torsvik, 2003) are derived from rocks along the Caledonian front (Fig. 1b). While this does not eliminate the pole from consideration, the proximity of the sampled locations to tectonically disturbed regions can cause complications in interpreting those results. As an example, the region may have suffered from vertical-axis rotations. The Tornetrask–Dividal pole can be rotated to bring it into alignment with A–B Cambrian/Ordovician poles, but additional information must be garnered from the region to evaluate the magnitude and sense of the rotation.

The Basu formation pole (Figs. 1b, 2; Golovanova et al., 2011) has several issues that preclude its use in any reconstruction or evaluation of Baltica’s apparent polar wander path. First, the pole is derived from sedimentary sequences located along the margins of Baltica within the Bashkirian anticlinorium. Although generally considered to have formed proximal to mainland Baltica, the rocks may suffer from local vertical axis rotations. The study by Golovanova et al. (2011) argued against rotation on the basis of general agreement in declination from widely separated sites. The pole also passes a fold-test and a reversal test. The fold test only constrains the pole to be older than Late Paleozoic. The most significant issue for this pole is that it resembles Silurian poles from Baltica (tilt-corrected, Fig. 2). In addition, the age of the pole is poorly constrained to “Late Vendian” although a recent paper by Grazhdankin et al. (2011) argues for an age range between 567 and 548 Ma on the basis of stratigraphic correlation between well-dated and poorly-dated sections in the central and southern Ursals.

The Kenko sandstone pole (Figs. 1b, 2; Lewandowski and Abrahamsen, 2003) of Cambrian age is derived from sedimentary units positioned in a horst block within the Caledonian deformational region between the Sorgenfrey–Torquint Zone and the Torquint–Teisseyre Zone on the island of Bornholm. The age of the Kenko sandstone is considered “Early Cambrian”. Lewandowski and Abrahamsen (2003) assign an age of 545 Ma based on an older time scale. The current time scale would place deposition of the Kenko sandstone to >530 Ma (pre-Tomtomian). The Kenko sandstone pole is displaced from all other Cambrian poles of Baltica, but can be easily rotated onto the Permo-Triassic suite of poles using a −10° vertical axis rotation.

The remaining C-poles are classified as such because they are based on very few samples. The Andarum limestone pole (Figs. 1b, 2; Torsvik and Rehnström, 2001) is calculated from 11 samples. The Volinya lavas (mentioned above, Nawrocki et al., 2004) yielded two very disparate directions (high latitude and low latitude). Two flows yielded the low-latitude direction (Bazaltovoye-5) and the high-latitude results from the Rafalivka resulted from a study of three flows and one tuff layer. Age constraints (~551 Ma) were based on U–Pb zircon determinations from overlying tuffs with the assumption that the volcanic activity was synchronous with the emplacement of the lavas and tuffs. The significance of these results is problematic. The low-latitude Volinya direction corresponds well to the AZV mean cited earlier whereas the high-latitude result is slightly displaced from the f-corrected Winter Coast pole (Fig. 2). The Andarum limestone (Alum) VGP is distinct from more well-defined poles from Baltica (Narva pole; Fig. 2), but due to the very limited sample size, it is preliminary to completely reject this result. Thus, all five of these results are classified as C-poles and should not be used as anchor points in Baltica’s APWP.

2.4. "D" Grade paleomagnetic poles

Poles that received a D-grade in this review should not be used for paleogeographic reconstructions. The rationale for rejecting each of these poles is given below.

The Fen pole (Figs. 1b, 2; most recently summarized by Meert et al., 1998) is often-cited as a reliable pole in previous works in spite of the fact that it resembles Permo-Triassic poles from Baltica. The main argument favoring a primary nature for the remanence in the Fen Complex was three-fold. First, the remanence was steeper than the extant Permo-Triassic directions available at the time (albeit only slightly so). Secondly, the \(^{40}Ar/^{39}Ar\) system in biotite and phlogopite was not reset in the dykes suggesting that the region had not been significantly heated. Lastly, the fact that the hematite-bearing Redberg sediments carried a stable remanence also argued against significant reheating in the region. Nevertheless, there were no stability tests for the Fen result leading the authors to caution using the Fen pole as a key pole in Neoproterozoic reconstructions.

In an effort to provide some additional paleomagnetic data for Baltica during a broadly coeval interval, samples of the Moelv tillite (reddish matrix) were collected from the Hedmark Group near the town of Moelv (Fig. 1b). The age of the Moelv tillite is poorly constrained; however, Bingen et al. (2005) obtained detrital zircons from the underlying Rendalen formation with ages as young as 620 Ma establishing an age for the Moelv tillite ≤620 Ma. The Moelv is also overlain (in some regions) by Cambrian-age Alum shales or the early Cambrian Vardal sandstone (Nystuen, 2008). This would restrict the age of the Moelv tillite to between 620 and 540 Ma. Bingen et al. (2005) argue that glaciation in the Moelv unit was part of the Gaskiers event at around 580 Ma. Paleomagnetic samples from the Moelv tillite were drilled in the field using a gasoline-powered drill and cut into standard-sized cores for paleomagnetic study. They were stepwise thermally demagnetized and measured on a 2-G cryogenic magnetometer at the University of Florida (for complete methods see Malone et al., 2008). Most samples were unstable and yielded either present-day field directions or random components. A small suite of samples from two sites with different bedding attitudes yielded stable components (Fig. 4a, b). The two sites yielded a well-grouped in-situ mean direction with Dec = 186°, Inc = −55° (K = 140, a95 = 4.7°; Fig. 4c) and a poorly-grouped tilt-corrected mean with a Dec = 176°, Inc = +20° (K = 14, a95 = 15.5°; Fig. 4d). Although there are too few samples for a statistically significant fold test, the data are clearly better grouped in geographic coordinates (Fig. 4c). This argues strongly for a post-folding magnetization. Folding and thrusting in the region were of Caledonian age (Siluro-Devonian). In addition, further rotation took place during the opening of the Oslo Rift during the Permain and Triassic. Fig. 4e compares the virtual geomagnetic pole (VGP) from the Moelv, the Fen pole and Permo-Triassic poles from Baltica (Josifidi...
and Khramov, 2005; Dominguez et al., 2011). The Moelv pole is slightly displaced from the Permo-Triassic results, but it can be brought into alignment with the poles with a slight rotation. The Fen pole is also in close agreement with the Permo-Triassic results. Given the similarity of both the Fen and the in-situ Moelv VGP to these Permo-Triassic results, it is very likely that both the Moelv and Fen regions were affected by tectono-thermal events associated with the opening of the Oslo Rift and should no longer be used in Neoproterozoic reconstructions.

The other poles receiving a "D" grade are all derived from the Alno Complex in Sweden (Piper, 1981; Meert et al., 2007). Meert et al. (2007) noted the complexity in the magnetic signatures in the samples and the arbitrary nature of assigning a particular component to a larger mean. The same complexity was also noted in the early study by Piper (1981).

3. Discussion and implications

After a careful review of paleomagnetic data from Baltica, there are constraints on only three intervals of time during the Ediacaran–Ordovician. Although these anchor points provide a useful starting point for analyzing Baltica’s motion, the best poles are not without issues. The Egersund dyke pole (608 Ma) overlaps with younger Ordovician poles (Fig. 2). Late Ediacaran (555–550 Ma) poles are derived from sedimentary sequences that might suffer from inclination shallowing. Late Cambrian–Middle Ordovician poles appear to be the most consistent results from Baltica.

The following discussion takes a conservative approach with the available data in an effort to test various hypotheses regarding Ediacaran–Cambrian paleogeography. When applying a strong filter to the paleomagnetic data, there are tie-points at ~610 Ma, 550 Ma and 500 Ma. These intervals cover the time period where rapid APW, rapid drift rates and non-dipolar fields have been proposed on a global basis (Meert et al., 1993; Kirschvink et al., 1997; Evans, 1998; Abrajevitch and Van der Voo, 2010).

While outside the scope of this paper, there are numerous controversies surrounding Ediacaran paleomagnetic data from Laurentia (see Abrajevitch and Van der Voo, 2010; McCausland et al., 2011 for a discussion). In spite of these controversies, there are similar-aged poles for Laurentia that would meet the “A–B” criteria employed in this paper (Table 2). Where appropriate, Baltica is shown in its paleoposition using original paleomagnetic data and f-corrected data.

The Long Range dyke pole (Murthy et al., 1992) falls at 19° N, 355° E (A95 = 14.1°) and is dated to 615 ± 2 Ma (U–Pb zircon and baddeleyite; Kamo et al., 1989; Kamo and Gower, 1994). These dykes are thought to
negative 610 Ma reconstruction Euler poles; Laurentia: 21.3 N, 118 E, +121.7; Baltica: 0 N, 314 E, –121.
550 Ma reconstruction Euler poles: Laurentia: 14.3 N, 208.9 E, –69; Baltica (f): 0 N, 206 E, –130.3; Baltica (a): 0 N, 203 E, –121.
500 Ma reconstruction Euler poles: Laurentia: 16.6 N, 94 E, +86.4; Baltica (f): 26.8 N, 320.5 E, –129.1; Baltica (a): 6.6 N, 347 E, –113.2. Rock units used for the 500 Ma reconstruction for Laurentia can be found in Torsvik et al. (2012; Table 1); Tablehead Mtn, St. George Group, Oneota dolomite, Moores Hollow, Morgan Creek, Point Peak, Taum Sauk, Royer dolomite, Florida Mountains, Tapeats sandstone (Van der Voo et al., 1976; Elston and Bressler, 1977; Dunn and Elmore, 1985; Jackson and Van der Voo, 1985; Loucks and elmore, 1986; Deutsch and Praisd, 1987; Nick and Elmore, 1990; Farr and Gose, 1991).

mark the onset of rifting and the opening of the Iapetus Ocean between Baltica and Laurentia. Fig. 5a shows a possible paleogeographic reconstruction between Baltica and Laurentia using the Long Range dyke pole and the nearly coeval Egersund dykes pole discussed above. The paleomagnetic data are latitudinally consistent with a connection between Baltica and Laurentia at the time of Iapetus Ocean opening.

A reconstruction at 550 Ma is somewhat more problematic from the Laurentian side. The only pole available is derived from the Skinner Cove volcanics. The Skinner Cove volcanics are found in an allochthonous block in western Newfoundland. McCausland and Hodych (1998) and Hodych et al. (2004) argue that these volcanic rocks can be used as a proxy for Laurentia paleolatitudes because they formed between 550 and 550 Ma again between 550 and 500 Ma. Latitudinal velocities do not; of course, give a full geodynamic picture of Baltica’s motion during the Ediacaran–Ordovician interval especially since the extant paleomagnetic record is sparsely populated. In this case, it is more apropos to look at apparent polar wander rates for Baltica during the Ediacaran–Ordovician interval (Fig. 6). APW rates are a summation of the latitudinal and rotational motions of the continent and therefore tend to be higher than purely latitudinal rates. Using the revised poles in Table 1, the average APW rate from Baltica ranges between 10 cm/year (500–475 Ma) and 20 cm/year (550–500 Ma). These average rates, while fast, are not extreme and can be explained by normal plate motions on the globe or by a combination of normal plate motion and a smaller component of true polar wander.

Although individual segments of the APWP can be explained via normal, albeit fast, plate motions, the back and forth oscillation of the APWP between 608 and 550 Ma (–82°, 1.4°/Myr) and between 550 and 500 Ma (–97°, 1.94°/Myr) is more difficult to explain. These APW lengths are consistent with the magnitude of motion required by IITPW, but at present we cannot determine the exact time or duration of the APW motion.

Table 2

<table>
<thead>
<tr>
<th>Pole name</th>
<th>Flat</th>
<th>Plong</th>
<th>A95</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Range dykes</td>
<td>19 N</td>
<td>355 E</td>
<td>14.1</td>
<td>615 ± 2 Ma</td>
</tr>
<tr>
<td>Skinner Cove</td>
<td>16 S</td>
<td>338 E</td>
<td>7</td>
<td>550 + 3/-2 Ma</td>
</tr>
<tr>
<td>Cambro-Ordovician</td>
<td>6 S</td>
<td>342 E</td>
<td>6.7</td>
<td>500–470 Ma</td>
</tr>
</tbody>
</table>

Notes: Long Range dykes pole from Hodych et al. (2004) and Murthy et al. (1992); Skinner Cove from McCausland and Hodych (1998); Mean Cambrian from Meert (1999) corrected for flattening (f=0.6).

610 Ma reconstruction Euler poles; Laurentia: 21.3 N, 118 E, +121.7; Baltica: 0 N, 314 E, –121.
550 Ma reconstruction Euler poles: Laurentia: 14.3 N, 208.9 E, –69; Baltica (f): 0 N, 206 E, –130.3; Baltica (a): 0 N, 203 E, –121.
500 Ma reconstruction Euler poles: Laurentia: 16.6 N, 94 E, +86.4; Baltica (f): 26.8 N, 320.5 E, –129.1; Baltica (a): 6.6 N, 347 E, –113.2. Rock units used for the 500 Ma reconstruction for Laurentia can be found in Torsvik et al. (2012; Table 1); Tablehead Mtn, St. George Group, Oneota dolomite, Moores Hollow, Morgan Creek, Point Peak, Taum Sauk, Royer dolomite, Florida Mountains, Tapeats sandstone (Van der Voo et al., 1976; Elston and Bressler, 1977; Dunn and Elmore, 1985; Jackson and Van der Voo, 1985; Loucks and elmore, 1986; Deutsch and Praisd, 1987; Nick and Elmore, 1990; Farr and Gose, 1991).

Fig. 5. (a) Reconstruction of Baltica and Laurentia at ~610 Ma; (b) Reconstruction of Baltica and Laurentia at 550 Ma; (c) Reconstruction of Baltica and Laurentia at 500 Ma. Gray-shaded continents are not corrected for inclination shallowing. F-corrected positions for Baltica contain the f-label. (d) Baltica’s 608–550 Ma journey ‘over the pole’ and (e) Baltica’s 550–500 Ma journey ‘back over the pole’. Anchor points are tied by A & B poles, intermediate ‘polar’ positions are based on hypothetical path between poles given in Fig. 7.

Please cite this article as: Meert, J.G., Ediacaran–Early Ordovician paleomagnetism of Baltica: A review, Gondwana Research (2013), http://dx.doi.org/10.1016/j.gr.2013.02.003
While the total oscillation is of the correct magnitude, the average rates of change \(\frac{b}{2°/\text{Myr}} \) are similar to those observed in the Phanerozoic and do not, in and of themselves, require significant TPW \((\text{Torsvik et al., 2012}) \). On the other hand, if the path lengths reflect TPW or IITPW, then the same relative magnitude of APW should be found in other continents. For the younger interval \((550–500 \text{ Ma}) \), there are no complementary large swings in the APWP's of Laurentia or Australia required by the IITPW hypothesis \((\text{Hodych et al., 2004; Schmidt and Williams, 2010}) \). Data from other continents for the older interval \((608–550 \text{ Ma}) \) are lacking or contradictory \((\text{see McCausland et al., 2011}) \).

It is more difficult to use these data to evaluate the equatorial dipole scenario proposed by Abrajevitch and Van der Voo \((\text{2010}) \). In order to fully describe the magnetic field during the Ediacaran–Cambrian interval a robust global dataset is required. At the same time, part of the rationale for proposing an oscillatory magnetic field was due to the contradictory nature of the Ediacaran–Cambrian dataset. For example, Abrajevitch and Van der Voo's analysis of the Baltica dataset relied on coeval, but disparate Ediacaran poles from the Fen Complex \((\text{Norway}) \) and the Alno Complex \((\text{Sweden}) \). Given that the Fen Complex pole is very likely a remagnetization and that many of the other poles considered in their analysis are problematic \((\text{e.g. too few samples, lack of evidence for primary magnetization, inclination shallowing}) \), any non-dipole field explanation must draw on better resolved paleomagnetic data from other continents.

4. Conclusions

The Ediacaran–Cambrian interval is of great interest to paleogeography due to the vast evolutionary changes of that time interval as well as other global changes in the marine, atmospheric and terrestrial systems \((\text{see Meert and Lieberman, 2008}) \). One of the main problems with Ediacaran paleomagnetism is that there are often wildly contradictory results from similar-age rocks. These contradictions are often explained with a variety of innovative \((\text{and non-uniformitarian}) \) scenarios such as intertial interchange true polar wander and non-dipolar magnetic fields. While these novel explanations may be the cause of the seemingly contradictory data, it is important to examine the database for possible problems.

This review has taken a careful look at the database for Baltica and applied a conservative filter to the data. New data from the Hedmark Group \((\text{Norway}) \) suggests that the Fen Complex pole was remagnetized during the opening of the nearby Oslo graben. Data from clastic sedimentary units from Baltica may be variably affected by inclination shallowing \((\text{Torsvik et al., 2012}) \) and therefore a small correction was applied to these sedimentary paleomagnetic data. In spite of the conservative approach taken, the filtered dataset requires a complex tectonic scenario to explain the back and forth motion of Baltica in the Ediacaran–Ordovician interval. Perhaps the most intriguing feature of the dataset is the oscillation \((~90°) \) from 608 to 550 and again from 550 to 500 Ma \((%82°) \) that may reflect some magnitude of true polar wander or additional

Please cite this article as: Meert, J.G., Ediacaran–Early Ordovician paleomagnetism of Baltica: A review, Gondwana Research (2013), http://dx.doi.org/10.1016/j.gr.2013.02.003
Acknowledgments

This research was supported by NSF grant EAR11-19038 to Joseph Meert. I wish to thank Phil McCausland and Eric Tohver for raising excellent points that helped improve the manuscript. This paper is dedicated to the memory of my father, Mr. Ahlstrom, who inspired my curiosity and influenced a great many young lives.

It is a 'tectonic' explanation. A more robust evaluation of true polar wander events and/or semi-stable departures from a dipole field requires a robust global dataset that is currently unavailable for the Ediacaran interval.

A sequence of three paleogeographic maps for Laurentia and Baltica is presented. Given the caveats involved in these reconstructions (polarity ambiguity, longitudinal uncertainty and errors), we do note that the data are consistent with geological models that posit the opening of the Iapetus Ocean around 600 Ma and subsequent evolution of the Baltica-Laurentia margin in the Late Ediacaran to Cambrian interval, but the complexity of that motion (using the chaotic Baltica APWP) is problematic.

References

